Ministry of Education

The experimental test for the third secondary stage in Differentiation and integration In the academic year 2014 – 2015

(الاسئلة في صفحتين)

يسمح باستخدام الالة الحاسبة

First: Answer the following question (mandatory):

First question: complete the following statements to be correct:

- a) The function f(x) is differentiable at X = a if
- b) If f(x) = h(x) k(x) where: h'(2) = k'(2), h''(2) > k''(2), then at X = 2 the function f(x) has a localvalue.

d) If
$$f(x) = \begin{cases} a \cos x + \frac{15 \sin x}{x} & x > 0 \\ \frac{x^6 - 64}{x^3 - 8} & x < 0 \end{cases}$$
 has a limit at $x = 0$, then $a = \dots$

- e) The function $f(x) = \tan x$ is continuous on
- f) If the side length of a square increases by the rate 3 cm/sec. ,then at the side length equals 5 cm ,the area of the square will increase by the ratecm² / sec

Second: Answer three of the following questions:

Second question:

a) If the function $f(x) = \begin{cases} x+1 & x \ge 1 \\ 3-a x^2 & x < 1 \end{cases}$ is continuous at x = 1

Find the value of a, then discuss the differentiability of this function at x=1

b) Prove that the two curves: $y = \frac{x}{2-3x}$ and $y = (x-2)^8 (1-2x)^3$ has a common tangent at the point (1, -1) and find its equation.

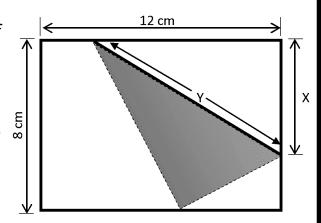
Third question:

a) Find: i)
$$\int \left(\frac{\sin 2x}{\cos 2x + 1}\right)^2 dx$$
 ii) $\int \frac{x+3}{\sqrt{x+4}} dx$

b) Find the intervals over which the graph of the function $f(x) = \frac{x^2 + 9}{x}$ is convex downwards and convex upwards . Find also the point of infliction of the function if it is exists then determine the absolute minimum value and the absolute maximum value for the function f(x) when $X \in [1, 6]$

باقى الاسئلة في الصفحة التالية

Fourth question:


a) If $y = (x + \sqrt{x^2 + 1})^4$, Prove that: $(x^2 + 1)y^{1/2} + xy^{1/2} = 16y$

b) If the internal radius r_1 of a hollow sphere increasing at rate of 1 cm / sec., while the volume of the material of the sphere remains constant, Find the rate of change of its outer radius r_2 when its radii r_1 and r_2 are 3 cm and 9 cm.

Fifth question:

a) If the slope of the normal to the curve of a function at any point on it equals (2Y + 1) csc X, If the curve of the function passes through the origin point. Find the equation of the curve.

b) The upper corner of a rectangular Piece of paper whose dimensions are 8 cm and 12 cm is folded over the lower part of the rectangle to lie on the lowest edge as shown in the opposite figure. Find the value of x in which y has a minimum value.

